VENYU

State Constrained Stochastic Optimal Control Using LSTMs

TANDON SCHOOL OF ENGINEERING

Bolun Dai, Prashanth Krishnamurthy, Andrew Papanicolaou, Farshad Khorrami

Problem Setup Deep FBSDE

The system considered is described as a stochastic differential equation (SDE)

$$
dx(t) = f(x(t),t)dt + G(x(t),t)u(t)dt + \Sigma(x(t),t)dw(t).
$$

The Deep FBSDE neural network architecture is shown below, at each time step the neural network estimates V_x. The neural network is optimized using a weight decayed L2 loss.

Experiments

The problem under the updated cost function can be recasted as a forward-backward stochastic differential equation (FBSDE) as shown on the right, where V_x is the partial derivative of the value function w.r.t. the state, Φ represents learned weights, and the Hamiltonian is defined as

$$
h(x, V_x, t, u^*) = q(x) + V_x^T G(x, t) u^*(x, t)
$$

+
$$
\sum_{i=1}^m S_i(u_i^*).
$$
 d

$$
dy(t) = \left(-h\big(x(t), V_x(x(t), t; \theta), t, u(t) \big) \right.+ V_x^T\big(x(t), t; \theta\big) G\big(x(t), t\big) u\big(x(t), t\big) \Big) dt + V_x^T\big(x(t), t; \theta\big) \Sigma\big(x(t), t\big) dw(t) dx(t) = \left(f\big(x(t), t\big) + G\big(x(t), t\big) u(x(t), t) \right) dt + \Sigma\big(x(t), t\big) dw(t) u(t) = U_{\text{max}} * \text{sig}(-R^{-1}G^T\big(x(t), t\big) V_x(x(t), t; \theta) y(0) = V(\phi) dy(0) = V_x(\phi) x(0) = x_0.
$$

The objective is to find a control sequence that minimizes the following cost

$$
J^{u}(x,t) = \mathbb{E}\Big[g(x(T)) + \int_{t}^{T}\Big(q(x(s)) + \frac{1}{2}u(s)^{T}Ru(s)\Big)ds\Big|x(t) = x\Big]
$$

with state constraints

$$
c_{\min} \leq c_s(x) \leq c_{\max}
$$

and control saturation

$$
u \in \mathcal{U} = \{u \mid |u_i| \leq U_{i,\max}\}.
$$

State & Control Constraint

Adaptive Update Scheme

The control is saturated as

$$
u^*(x,t) = U_{\text{max}} * \text{sig}(-R^{-1}G^T(t,x)V_x).
$$

For a state constraint of [-1, 3], the penalty function with different parameterizations are shown in the figure below.

$$
100\begin{array}{|c|c|c|}\hline \text{---} & \text{---} & \text{---} \end{array}
$$

To ensure numerical stability, we use the square root of state cost variance over a fixed number of iterations as the update threshold, and gradually harden the penalty function p(x). Since the state cost variance would never decrease to zero, we also set a minimum value for the threshold.

$$
k \leftarrow k + \delta
$$

$$
\delta \leftarrow \delta - \Delta_{\delta}
$$

$$
\beta \leftarrow \gamma \beta
$$

$$
\gamma \leftarrow \gamma + \Delta
$$

The presented experimental results are conducted on the cart-pole swing-up task. Two state constraint settings were tested: (i) constraining cart position and cart velocity; (ii) constraining the sum of kinetic and potential energy. We see that in both settings, the learned controller is able to respect the constraint boundaries.

Comparison between constrained and unconstrained controller

Energy constraint comparison

The state constraint is applied via a penatly function

$$
p(x) = \frac{L}{1 + e^{-k(c_s(x) - c_{\max})}} - \frac{L}{1 + e^{-k(c_s(x) - c_{\min})}}
$$

$$
+ L - \frac{2L}{1 + e^{-k(\mu - c_{\max})}}.
$$

$$
\mathbb{E}\left[g(x(T))+\int_t^T\!\!\left(q(x(s))+p(x(s))+\sum_{i=1}^mS_i(u_i(s))\right)ds\Big| x(t)=x\right].
$$

The corresponding control cost is

$$
S_i(u_i) = c_i \int_0^{u_i} \text{sig}^{-1}\Big(\frac{v}{U_{i,\text{max}}}\Big)dv.
$$